
8C H A P T E R

DIGGING DEEPER INTO CSS

n the previous chapter, you learned different ways of integrating CSS into

your web documents and the basic syntax rules used to formulate style

rules. In this chapter, you will expand your understanding of CSS by learn-

ing how to use it to take control of the placement of content, customize the display

of lists, and to style both text and graphic links and buttons. You will also learn

how to use CSS to style the flow of graphics and text, to display background images,

to style your tables in numerous ways, and to influence the presentation of text

in (X)HTML forms.

Specifically, you will learn:

• How to work with and configure containers

• Different options for specifying the presentation of content

• How to modify the display of markers used to identify ordered and unordered

list items

• Create rollover links, controls, and buttons

• A number of ways that you can improve the presentation of graphics, tables,

and forms

I

PROJECT PREVIEW: THE FORTUNE TELLER GAME

This chapter’s web project is the development of the Fortune Teller game. When first started,

this game displays the screen shown in Figure 8.1.

FIGURE 8.1

The game’s
presentation is

controlled using
an external style

sheet.

To play, type in a question in the text control located in a form at the bottom of the browser

window and then click on the Get Answer button. For the game to work properly, the player

must submit all questions in a form that allows for Yes/No responses. Once the Get Answer

button is clicked, the game will display one of ten randomly selected responses, as demon-

strated in Figure 8.2.

FIGURE 8.2

The game’s answer
to the player’s

question is
displayed at the
bottom of the

browser window.

HTML, XHTML, and CSS for the Absolute Beginner230

After a short three-second pause, the game will automatically clear out both the player’s

question and the game’s answer, readying the game to accept a new question while also

providing the player with plenty of time to view and consider the game’s answer. In the event

that the player clicks on the Get Answer button without entering a question, the game will

display the following popup dialog window, notifying the player of his error.

FIGURE 8.3

Game play
resumes as soon as

the player clicks
on the OK button.

WORKING WITH CONTAINERS

One of the most useful features of CSS is its ability to control the position at which elements

are displayed on web pages. Key to understanding how this works is the concept of a container.

A container is an entity to which you can apply CSS. In addition, many elements can serve as

containers for other elements. To help illustrate this point, look at the following example.

<body>

 <p>

 Who did Roger Rabbit marry?

 </p>

</body>

Here, the paragraph is used to display a little text. In addition, an em element is embedded

within the paragraph. Both the paragraph and the em elements are containers. Therefore, both

can be styled.

In most cases, any style you apply to an element is automatically inherited by
any embedded elements. So, if you add a style rule that displays all text within
the paragraph in red, the embedded em element inherits that color styling as well.

A container has three common presentation attributes that affect how its content is blended

in with other content. These container attributes are margins, padding, and borders.

Setting Container Margins
A margin is the space that encloses the container. By changing container margins, you can

make things feel less cluttered by adding a little extra white space. Setting a container’s

margin is easy. All you have to do is use the margin property, as demonstrated here:

p {margin: 10cm 10cm 5cm 5cm;}

HINT

Chapter 8 • Digging Deeper into CSS 231

Here, the left and right margins have been set to 10 centimeters and the top and bottom

margins have been set to 5 centimeters.

If you prefer to be more explicit, you can specify each margin separately, as
demonstrated here:

p {margin-left: 10cm; margin-right: 10cm; margin-top: 5cm;

 margin-bottom: 5cm;}

Padding Space Between the Container and Its Border
All containers have a border, whether it is visible or not. The border represents the outside

edge of the container. If you want, you can add additional padding between a container and

its border using the padding attribute. The padding attribute works just like the margin element,

as demonstrated here.

p {padding: 10cm 10cm 5cm 5cm;}

Configuring a Container’s Border
By default, container borders are invisible. However, you can display and configure them

using the border-width and border-style properties. The border-style property lets you enable

and disable the display of the container’s border (disabled by default). Take, for example, the

following rule.

p {border-style: solid;}

This rule will display a solid border around every paragraph in the document. The following

list outlines the possible range of values supported by the border-style property. The last

value (none) is the default.

• hidden

• dashed

• dotted

• double

• groove

• inset

• outset

• ridge

• solid

• none

HINT

HTML, XHTML, and CSS for the Absolute Beginner232

Once you have used the border-style property to select and display a container’s border, you

can use the border-width property to specify the thickness of that border. You have four

choices, as outlined here:

• tthin. Displays the container using a thin border.

• mmedium. Displays the container using a medium border.

• tthick. Displays the container using a thick border.

• value. Displays the container with a border whose thickness depends on what value you

assign (example: 2 cm).

The following example demonstrates how to display a border around all paragraphs in a

document using an inset border that is medium thick.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Working with Borders</title>

 <style type = "text/css">

 pp {border-style: double; border-width: medium;}

 </style>

 </head>

 <body>

 <p>

 Who did Roger Rabbit marry?

 </p>

 </body>

</html>

Figure 8.4 shows how the paragraph element’s border looks when rendered by the browser.

Note that in this example and in the rest of the examples that you will see in this
chapter, embedded style sheets are used to simplify examples and make things
easier to present. However, use of external style sheets is still recommended
for most real-life web documents.

HINT

Chapter 8 • Digging Deeper into CSS 233

FIGURE 8.4

An example of
how to display and

configure an
element’s content

in a container.

TAKING CONTROL OF ELEMENT PLACEMENT

CSS provides you a number of different properties that you can use to take control over the

placement of document content within the browser window. CSS supports a coordinate sys-

tem along with properties that you can use to interact with that system. Figure 8.5 provides

a visual depiction of CSS’s coordinate system. As you can see, coordinate 0,0 is located in the

upper-left corner of the browser window. 0,0 represents vertical and horizontal values. As the

display of an element is moved down the browser window, the value of its y (vertical) coor-

dinate increases. Likewise, as an element moves from left to right, the value of its x (horizontal)

coordinate increases.

FIGURE 8.5

A depiction of
CSS’s coordinate

system.

HTML, XHTML, and CSS for the Absolute Beginner234

Table 8.1 provides a list of CSS properties that you can use to affect element positioning.

T A B L E 8 . 1 C S S P R O P E R T I E S T H A T A F F E C T E L E M E N T

P O S I T I O N I N G

Property Property Description

top pixel value Offset from the top of the browser’s display area

(absolute) or from its default location as determined

by the browser.

bottom pixel value Offset from the bottom of the browser’s display area

(absolute) or from its default location as determined

by the browser.

left pixel value Offset from the top-left side of the browser’s display

area (absolute) or from its default location as

determined by the browser.

right pixel value Offset from the top-right side of the browser’s display

area (absolute) or from its default location as

determined by the browser.

position static, absolute, relative,

fixed, float

Determines how to position an element.

z-order numeric value A value that determines the order in which elements

appear when they overlap one another.

Static Positioning
Static is the default positioning option, and it is the option you have been using throughout

this book. With static positioning, elements are displayed in the order they are laid out in

your documents, one after another, as demonstrated in the following example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Static Positioning Demo</title>

 <style type = "text/css">

 p {border-width: thin; border-style: groove; height: 200px;

Chapter 8 • Digging Deeper into CSS 235

 width: 200px;}

 #yellowbox {background-color: yellow;}

 #bluebox {background-color: blue;}

 </style>

 </head>

 <body>

 <p id = "yellowbox">

 Yellow Box

 </p>

 <p id = "bluebox">

 Blue Box

 </p>

 </body>

</html>

Figure 8.6 shows how the resulting web page is laid out when this example is rendered by

the browser.

FIGURE 8.6

An example of
how to control

container
placement using

static positioning.

HTML, XHTML, and CSS for the Absolute Beginner236

Absolute Positioning
Absolute positioning provides precise control over the placement of your content. You simply

specify the location where you want an element’s content to appear using the top, bottom,

left, and right properties, as demonstrated by the following example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Static Positioning Demo</title>

 </head>

 <body>

 <p style = "pposition: absolute; left: 50px; top: 25px; z-index: 20;" >

 <img src = "cats.jpg" width = "270" height = "200"

 alt = "Picture of two cats" />

 </p>

 <p style = "pposition: absolute; left: 200px; top: 150px; z-index: 10;">

 <img src = "river.jpg" width = "270" height = "200"

 alt = "Picture of a river" />

 </p>

 </body>

</html>

As you can see, in this example two images are displayed on the browser window. The assigned

coordinates cause the images to overlap. As a result, the image with the highest specified

z-index value is displayed on top of the other figure. Figure 8.7 shows how this example’s

context looks when rendered by the browser.

Chapter 8 • Digging Deeper into CSS 237

FIGURE 8.7

Using absolute
position to

exercise precise
control over the

display of two
images.

Relative Positioning
A problem with absolute positioning is that not all computers are set up with the same screen

resolution. Therefore, the coordinates system changes from user to user. As a result, it can be

difficult to ensure web pages look the way you want them to at different resolutions. Relative

positioning sets an element’s position relative to other elements.

Using relative positioning, you can create an application that automatically repositions its

elements based on window resolution. This helps keep things from overlapping or from being

pushed out of view. As an example of how relative positioning works, look at the following

example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Relative Positioning Demo</title>

 </head>

 <body>

HTML, XHTML, and CSS for the Absolute Beginner238

 <p>

 Man

 went

 to

 the

 moon

 and

 came

 back

 again

 only

 to

 find

 the

 urge

 to

 return

 so

 compelling

 that

 he

 wished

 he

 had

 never

 left

 in

 the

 first

 place.

 </p>

 </body>

</html>

Figure 8.8 demonstrates how this page will look when loaded into the browser.

Chapter 8 • Digging Deeper into CSS 239

FIGURE 8.8

Using relative
positioning to
control text

presentation.

Fixed Positioning
Elements that are positioned using fixed positioning do not scroll or change position when

the user scrolls up and down the web page. Instead, the elements remain visible at the same

location while the rest of the page’s content scrolls behind them. Fixed positioning is often

used to keep report headings visible at the top of a web page at all times. The following

example demonstrates how to work with fixed positioning.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Fixed Positioning Demo</title>

 <style type = "text/css">

 p {border-width: thick; border-style: solid; height: 55px;

 width: 189px; position: fixed; top: -16px; left: 0px;}

 </style>

 </head>

 <body>

 <p>

 </p>

 <pre>

HTML, XHTML, and CSS for the Absolute Beginner240

 Celtics

 Nets

 Knicks

 76ers

 Raptors

 Mavericks

 Rockets

 Grizzlies

 Hornets

 Spurs

 Bulls

 Cavaliers

 Pistons

 Pacers

 Bucks

 Nuggets

 Timberwolves

 Trail Blazers

 City Thunder

 Jazz

 Hawks

 Bobcats

 Heat

 Magic

 Wizards

 Warriors

 Clippers

 Lakers

 Suns

 Kings

 </pre>

 </body>

</html>

Note that the four blank lines in the previous document are no accident.

Chapter 8 • Digging Deeper into CSS 241

FIGURE 8.9

Using fixed
positioning to set
up a non-scrolling

graphic heading.

Figure 8.10 demonstrates how this page will look when first loaded into the browser.

FIGURE 8.10

The graphic
heading remains in
place as the page’s

content is
scrolled.

Float Positioning
The position option supported by CSS is float. When an element is set up to float, it can be

assigned to shift or float right or left on its current vertical line. The float property can be

assigned any of the following values; left, right, none. A floated element will shift position

HTML, XHTML, and CSS for the Absolute Beginner242

in the specified direction until it makes contact with the edge of the container in which it is

defined or until it makes contact with another float. Any text displayed on the page will follow

down and around the floated element.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Float Positioning Demo</title>

 <style type = "text/css">

 pp {float: right;}

 </style>

 </head>

 <body>

 <p>

 </p>

 </body>

</html>

Figure 8.11 demonstrates how this page will look when first loaded into the browser.

FIGURE 8.11

Using float
positioning to

control the
horizontal

positioning of an
element.

Chapter 8 • Digging Deeper into CSS 243

USING CSS TO STYLE YOUR LISTS

You can use CSS to style just about any content you embed in your web pages. This includes

styling ordered and unordered lists. By default, ordered lists are displayed using Arabic

numerals (1,2,3...) and ordered lists are displayed using a round disk shaped bullet. Using CSS,

you can modify these defaults, displaying your lists using a variety of different markers.

Customizing Markers for Ordered Lists
If you prefer to use something other than the standard Arabic numerals when defining

ordered lists, you can use the list-style-type property to select any of the alternative numeric

styles listed in Table 8.2.

T A B L E 8 . 2 V A L U E S S U P P O R T E D B Y T H E L I S T - S T Y L E P R O P E R T Y

Numeric Style Description Example

Decimal Displays Arabic numeral characters (default) 1, 2, 3, 4, 5, ...

lower-alpha Displays lowercase alphabetic characters a, b, c, d, e, ...

lower-roman Displays lowercase Roman numeral characters i, ii, iii, iv, v, ...

upper-alpha Displays uppercase alphabetic characters A, B, C, D, E, ...

upper-roman Displays uppercase Roman numeral characters I, II, III, IV, V, ...

none Suppresses the display of characters N/A

Actually, CSS supports a number of other numeric styles, including: armenian,
decimal-leading-zero, georgian, inherit, lower-greek, lower-latin, and upper-
latin. However, Internet Explorer does not currently support any of these
numeric style types, so it is recommended that you avoid their usage.

As an example of how to work with the list-style-type property to change the presentation

of your ordered lists, look at the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Ordered List</title>

TRAP

HTML, XHTML, and CSS for the Absolute Beginner244

 </head>

 <body>

 <h1>Directions</h1>

 Start off on Maple Street.

 Go two lights and turn right on Puff Puff Lane.

 Go half a mile and veer right on Santa Claus Parkway.

 Go another 3.5 miles and turn right onto Puff'n Stuff Avenue.

 Go 1.2 miles and turn left into the main entrance of the fun

 park.

 </body>

</html>

Here, a list of five ordered items has been defined. Figure 8.12 shows how this list looks when

rendered by the browser.

FIGURE 8.12

An example of an
ordered list

displayed using
the default

marker.

Now, let’s rework the example as shown below.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

Chapter 8 • Digging Deeper into CSS 245

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Styled Ordered List</title>

 <style type = "text/css">

 ol {list-style-type: upper-roman;}

 </style>

 </head>

 <body>

 <h1>Directions</h1>

 Start off on Maple Street.

 Go two lights and turn right on Puff Puff Lane.

 Go half a mile and veer right on Santa Claus Parkway.

 Go another 3.5 miles and turn right onto Puff'n Stuff Avenue.

 Go 1.2 miles and turn left into the main entrance of the fun

 park.

 </body>

</html>

As you can see, this example includes a style rule that uses the list-style-type property to

alter the display of the marker to upper-roman, as shown in Figure 8.13.

FIGURE 8.13

An example of an
unordered list that

has been
configured to use
the upper-roman

marker.

HTML, XHTML, and CSS for the Absolute Beginner246

Changing Markers for Unordered Lists
By taking advantage of the list-style-type property, you can modify the appearance of the

markers used to style your unordered lists. You can even hide the markers altogether. The

following lists outlines various markers that can be assigned to this property.

• ddisc. A darkened round marker (default).

• ccircle. A hollow or empty circle marker.

• ssquare. A darkened square marker.

• nnone. A blank or hidden marker.

As an example of how to work with the list-style-type property to change the presentation

of your unordered lists, look at the following.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Unordered List</title>

 </head>

 <body>

 <h1>School Supplies</h1>

 Two No. 2 pencils

 Ruler

 Three spiral notebooks

 Two 3-ring binders

 500 sheets of college lined notebook paper

 </body>

</html>

Here, a list of five unordered items has been defined. Figure 8.14 shows how this list looks

when rendered by the browser.

Chapter 8 • Digging Deeper into CSS 247

FIGURE 8.14

An example of an
unordered list

displayed using
the default

marker.

Now, let’s rework the example as shown below.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Styled Unordered List</title>

 <style type = "text/css">

 ul {list-style-type: circle;}

 </style>

 </head>

 <body>

 <h1>School Supplies</h1>

 Two No. 2 pencils

 Ruler

 Three spiral notebooks

 Two 3-ring binders

 500 sheets of college lined notebook paper

HTML, XHTML, and CSS for the Absolute Beginner248

 </body>

</html>

As you can see, this example includes a style rule that uses the list-style-type property to

alter the display of the maker to a circle, as shown in Figure 8.15.

FIGURE 8.15

An example of an
unordered list that

has been
configured to use
the circle marker.

As demonstrated in both of the previous examples, take note that regardless of which marker

type you elect to use, CSS automatically sizes the marker to ensure that it is kept proportional

with its associated text.

Creating Custom List Markers
If you are not satisfied with the set of graphic markers made available by CSS, you can create

and use your own marker using the list-style-image property. To use this property to supply

your own custom marker, you must specify the URL of the graphic file where the marker

resides. In addition, you must ensure that the marker is proportionally sized to match up

with its associated text. CSS will not automatically scale your custom marker.

As an example of how to use the list-style-image property, look at the following document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

Chapter 8 • Digging Deeper into CSS 249

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Customized List Markers</title>

 <style type = "text/css">

 body {font-size: 1.6pc;}

 ul {list-style-image: url("ball.jpg");}

 </style>

 </head>

 <body>

 <h1>Popular NBA Teams</h1>

 Boston Celtics

 Orlando Magic

 Cleveland Cavaliers

 Dallas Mavericks

 </body>

</html>

As you can see, this example uses a custom graphic named ball.jpg as the basis for creating a

customized marker. Figure 8.16 shows how this example looks when rendered by the browser.

FIGURE 8.16

An example of an
unordered list that
uses a customized

marker.

HTML, XHTML, and CSS for the Absolute Beginner250

STYLING LINKS

Another useful application of CSS is in style links. This includes both text and graphic links.

For example, by default, browsers generally underline links and change the color in which

they are displayed based on their status. Blue may be used to identify a link that has not been

touched, while links that have been visited may be displayed in purple. If this color scheme

is not consistent with the color scheme of your website you may want to modify the style of

those links. This is accomplished by applying style rules to the anchor element while using

pseudo classes.

Modifying the Presentation of Text Links
You were introduced to pseudo classes in Chapter 7. CSS supports five pseudo classes, all of

which are designed to work with the anchor element. The following document demonstrates

how you can use them in conjunction with CSS to take control over the appearance of all

your links.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Customized Links</title>

 <style type = "text/css">

 body {font-size: 1.4pc;}

 a:link {color: blue;}

 a:visited {color: green;}

 a:hover {color: red; font-weight: bolder; text-decoration: none;}

 a:active {color: green;}

 a:focus {color: red; font-weight: bolder; text-decoration: none;}

 </style>

 </head>

 <body>

 <p>Home</p>

 <p>Products</p>

 <p>Services</p>

 <p>Downloads</p>

Chapter 8 • Digging Deeper into CSS 251

 <p>Customer Service</p>

 </body>

</html>

Figure 8.17 demonstrates how things look when this document has been loaded into the

browser and the mouse-pointer has been moved over the Products link.

FIGURE 8.17

An example of
how to use CSS to

alter the
presentation of
document text

links.

Creating Graphical Links
Another common use of CSS is to convert text links into graphic links. To accomplish this,

you need to use CSS to add a border to the link, and give it a background color, as demon-

strated in the following example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Graphic Links</title>

 <style type = "text/css">

 a {border: 3px solid black;

 display: block;

HTML, XHTML, and CSS for the Absolute Beginner252

 font: 14px Arial;

 text-decoration: none;

 text-align: center;

 width: 200px;

 height: 20px;

 background: yellow;

 color: blue;

 }

 a:focus, a:hover, a:active {

 background: red;

 }

 </style>

 </head>

 <body>

 <p>Home</p>

 <p>Products</p>

 <p>Services</p>

 <p>Downloads</p>

 <p>Customer Service</p>

 </body>

</html>

When this document is loaded into the browser, the first CSS style rule configures all of the

links so that they are displayed with a solid black border that is 150 pixels wide and 30 pixels

high. Their containers have been given a yellow background. The second rule uses two pseudo

classes to modify the background color of each link’s container whenever the mouse pointer

is moved over it or when it becomes active. The result is a simple but impressive set of graphic

menu controls that when clicked control navigation to other web pages.

Figure 8.18 demonstrates how things look when this document has been loaded into the

browser and the mouse-pointer has been moved over the container for the Services link.

Chapter 8 • Digging Deeper into CSS 253

FIGURE 8.18

An example of
how to use CSS to

create basic
graphic menu link

controls.

If you want to get even fancier, you can use background images in place of background colors,

as demonstrated in the following example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Graphic Button Links</title>

 <style type = "text/css">

 a {display: block;

 font: 14px Arial;

 text-decoration: none;

 text-align: center;

 width: 200px;

 height: 20px;

 //*background: yellow;*/

 bbackground-image: url("yellow.png");

 color: blue;

 }

 a:focus, a:hover, a:active {

 //*background: red;*/

HTML, XHTML, and CSS for the Absolute Beginner254

 bbackground-image: url("red.png");

 }

 </style>

 </head>

 <body>

 <p>Home</p>

 <p>Products</p>

 <p>Services</p>

 <p>Downloads</p>

 <p>Customer Service</p>

 </body>

</html>

The differences between this example and the one before it are highlighted in bold. As you

can see, instead of using the background property, this new version of the document uses the

background-image property to display graphic files. This example makes use of two graphic

image files. These two images contain a copy of an almost identical graphic button, the only

difference being the color of the buttons. When loaded into the browser, CSS automatically

centers and displays link text on the graphic button. Figure 8.19 demonstrates how this

example looks when loaded into the browser.

FIGURE 8.19

An example of
how to use CSS to

create fancy
graphic menu link

controls.

Chapter 8 • Digging Deeper into CSS 255

USING CSS TO BETTER INTEGRATE TEXT AND IMAGES

Another good use of CSS is to help better integrate and style the presentation of the flow of

text and graphics on your web pages. Using CSS, you can, for example, wrap text around

graphics in much the same way as is done in magazines and newspapers. CSS also makes easy

work of adding graphics as backgrounds for your web pages.

Wrapping Text Around Graphics
The trick to wrapping text around graphics lies in the application of the float property. An

element that is floated, in this case a graphic, is shifted to the right or left, allowing text to

flow around it. The float property supports the following values: left, right, and none. The

following example demonstrates how to use the float property to flow text around the right

side of a figure (as opposed to displaying it over or under the figure).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Styled Graphic Demo</title>

 <style type = "text/css">

 p {

 border-width: thin;

 border-style: solid;

 width: 500px;

 height: 210px;

 }

 ##logo {

 ffloat: left;

 }}

 </style>

 </head>

 <body>

 <p>

 <img iid = "logo" src = "TwoCats.jpg" width = "149" height = "149"

 alt = "Two Cats Logo" />

HTML, XHTML, and CSS for the Absolute Beginner256

 Welcome to Two Cats Consignment Shop. We buy and sell

 anything and everything. Stop by and see what we have got in

 store for you! We specialize in antique furniture and rare

 artwork. However, we have a little something for everyone. This week

 we are featuring hand-crafted tableware from mid-18th century Europe.

 We are open from 8am to 5pm Monday - Friday and from noon to 4pm on

 Saturdays. If you have something you would like to put on

 consignment, please call for an appointment. Our phone number is

 (999) 888 - 1234. We look forward to seeing or hearing from you soon!

 </p>

 </body>

</html>

If you look closely, you will see that the document’s image img element has been assigned an

ID of Logo and that a style rule has been used to apply the float property to the element. Note

that the value of float has been set to left and that a paragraph rule has also been added

that wraps up the paragraph and all its contents, including the img element, in a solid border.

Figure 8.20 shows how this example output is rendered by the browser.

FIGURE 8.20

Using the float
property to allow

text to flow
around the side of

an image.

Note that while the text now wraps around the right side of the graphic, things look a little

crowded because the text is so tightly placed up against the side of the graphic. However, this

can easily be remedied by modifying the style rule and configuring the margin for the img

element as demonstrated here.

Chapter 8 • Digging Deeper into CSS 257

<style type = "text/css">

 p {

 border-width: thin;

 border-style: solid;

 width: 500px;

 height: 210px;

 }

 #logo {

 float: left;

 mmargin-right: 10px;

 mmargin-bottom: 2px;

 }

</style>

As you can see, rather than use the margin property to set the margin for all four sides of the

img element, the margin-right and margin-bottom properties were used to modify both the

element’s right and lower margins. Figure 8.21 shows how these changes to the style rule

have affected the resulting web page.

FIGURE 8.21

You can improve
presentation by

setting the image’s
right and bottom

margins.

Adding a Background Image to Your Web Page
You have no doubt visited different websites that display graphic images as background on

web pages. You can do the same thing using the background-image property. Of course, to be

effective, the image you display must not overpower the content that you want to display. To

use the background-image property, all you have to do is specify the URL of the graphic file you

want to use, as demonstrated in the following example.

HTML, XHTML, and CSS for the Absolute Beginner258

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Background Demo</title>

 <style type = "text/css">

 bbody {

 bbackground-image: url(background.png);

 }}

 h1 {

 font-size: 3pc;

 }

 p {

 font-size: 2pc;

 }

 </style>

 </head>

 <body>

 <h1>Welcome to "Who is asking?"</h1>

 <p>

 Our guest tonight is funny man Tim Soboring. Tim is currently hosting

 the hit TV comedy

 "What's on my Mind."

 </p>

 <p>

 Tomorrow's guest will be movie star and civic activist Carolyn

 Crywithme.

 </p>

 </body>

</html>

Chapter 8 • Digging Deeper into CSS 259

Here, an image file named background.png is used as the document’s background, accom-

plished using the background-image property with a rule that styles the document’s body

element. Figure 8.22 shows an example of how this document looks when rendered by the

browser.

FIGURE 8.22

An example of
how to use CSS to
add a background

to your web pages.

Note that by default, the image is tiled, both horizontally and vertically, in the event the

image is too small to fill the entire browser window. You can modify this behavior by adding

the background-repeat property to the body element’s style rule. This property supports the

following values.

• rrepeat-x. Tiles the image horizontally.

• rrepeat-y. Tiles the image vertically.

• nno-repeat. Disables image tiling.

STYLING YOUR TABLES

CSS provides extensive control over the presentation of tables. You can create CSS rules that

add table borders, pad table cells, collapse individual cell borders, add background color, set

border color, and control text alignment.

HTML, XHTML, and CSS for the Absolute Beginner260

In Chapter 6, you learned how to add borders to your tables using the table element’s

border attribute. Though effective, it is better to use CSS’s border-style property to add

borders to your tables. Not only is using the border-style property considered better form,

but it also provides the ability to specify any of the following values:

• dashed

• dotted

• double

• groove

• hidden

• inset

• none

• outset

• solid

The following document provides an example of how to set a table’s border using the

border-style property.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 8 - Background Demo</title>

 <style type = "text/css">

 ttable {

 bborder-style: solid;

 }}

 tth, td {

 bborder-style: solid;

 }}

 </style>

 </head>

 <body>

Chapter 8 • Digging Deeper into CSS 261

 <table>

 <tr>

 <th scope = "col">Team</th>

 <th scope = "col">City</th>

 <th scope = "col">Conference</th>

 </tr>

 <tr>

 <td>Lakers</td>

 <td>Los Angeles</td>

 <td>West</td>

 </tr>

 <tr>

 <td>Celtics</td>

 <td>Boston</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Magic</td>

 <td>Orlando</td>

 <td>East</td>

 </tr>

 <tr>

 <td>Cavaliers</td>

 <td>Cleveland</td>

 <td>East</td>

 </tr>

 </table>

 </body>

</html>

Figure 8.23 shows how the table produced by this example looks when rendered by the

browser.

By default, the browser allocated only enough space to a row or column to accommodate its

largest cell entry. You can often make a table look better by using the padding property to

add a little extra white space to its cells. To demonstrate how this works, let’s modify the

embedded style sheet from the previous example as shown here:

HTML, XHTML, and CSS for the Absolute Beginner262

FIGURE 8.23

Using CSS to add a
border to your

table.

<style type = "text/css">

 table {

 border-style: solid;

 }

 th, td {

 border-style: solid;

 ppadding: 10px

 }

</style>

Figure 8.24 shows how the table looks once it has been rendered using the updated style rule.

FIGURE 8.24

Using CSS to add a
little padding to

table cells.

Chapter 8 • Digging Deeper into CSS 263

If you look closely at Figure 8.24, you will notice that every cell in the table has its own

individual border. If you want, you can modify the table element’s style rule by adding the

border-collapse property to it (with a value of collapse) to disable this presentation effect, as

demonstrated here:

<style type = "text/css">

 table {

 border-style: solid;

 bborder-collapse: collapse;

 }

 th, td {

 border-style: solid;

 padding: 10px

 }

</style>

Figure 8.25 shows the effect that this rule change has on the table.

FIGURE 8.25

Using CSS to
collapse individual

cell borders.

Often table headings are highlighted by assigning a background color to them. This makes

them stand out and helps make table data easier to scan. To add background color to cells in

your tables, all you have to do is add the background-color property to the style rule for the

appropriate table elements, as demonstrated here:

<style type = "text/css">

 table {

 border-style: solid;

 border-collapse: collapse;

HTML, XHTML, and CSS for the Absolute Beginner264

 }

 th, td {

 border-style: solid;

 padding: 10px

 }

 th {

 bbackground-color: gray;

 }

</style>

Figure 8.26 shows the effect that this rule change has on the table.

FIGURE 8.26

Using CSS to add
background color

to your tables.

If you want, you can even specify the color of your tables by assigning a color to them, as

demonstrated here:

<style type = "text/css">

 table {

 border-style: solid;

 border-collapse: collapse;

 }

 th, td {

 border-style: solid;

 padding: 10px;

 bborder-color: blue;

 }

 th {

Chapter 8 • Digging Deeper into CSS 265

 background-color: gray;

 }

</style>

You can even use CSS to control the alignment of text within labels using the text-align

property, assigning it a value of left, right, center, or justify. To demonstrate how to work

with this property, let’s modify the previous style sheet as shown here:

<style type = "text/css">

 table {

 border-style: solid;

 border-collapse: collapse;

 }

 th, td {

 border-style: solid;

 padding: 10px;

 border-color: blue;

 }

 th {

 background-color: gray;

 ttext-align: left

 }

</style>

Figure 8.27 shows the effect that this style modification has on the table.

FIGURE 8.27

Using CSS to
control cell
alignment.

HTML, XHTML, and CSS for the Absolute Beginner266

Styling Your Forms
One final area where we will look at applying CSS is in the modification of form presentation.

Forms are challenging to style because every browser displays them differently. Form ele-

ments are closely tied to the operating system. To try to provide users with a consistent

environment in which to work, browsers rely on the operating system to render form controls.

As such, form appearance is heavily affected by the operating system’s native presentation

scheme. This scheme not only varies from operating system to operating system, but it also

often varies between different versions of the same operating system. For example, Windows

Vista’s controls have a distinct look and feel from those provided by Windows XP.

Given the above restrictions, it is all but impossible to create forms that look exactly the same

on every computer that loads your web documents. As such, it’s often best to allow the browser

to render forms using its default style. This brings with it the benefit that your visitors will

see your form presented in a manner consistent with their experience and expectations. So,

while you should avoid tinkering around with your form’s controls, there is often plenty of

value in modifying the presentation of the other elements on your forms, including headings,

paragraphs, labels, and fieldsets.

As an example of how you might go about modifying a form’s appearance, look at the fol-

lowing, which you might recognize from Chapter 6.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 6 - Building Forms</title>

 <<style type = "text/css">

 bbody {

 ccolor: blue;

 }}

 ffieldset {

 ppadding: 10px;

 mmax-width: 300px;

 bborder: double;

 }}

 ..textbox {

Chapter 8 • Digging Deeper into CSS 267

 ffloat: left;

 wwidth: 220px;

 }}

 <</style>

 </head>

 <body>

 <h1>Joe's Custom T-Shirts</h1>

 <form action = "/cgi-bin/processdata.cgi" method = "post">

 <p>

 <label cclass = "textbox" for = "name">Last name: (8 character

 max.)</label>

 <input type = "text" id = "name" name = "name" size = "8"

 maxlength = "8" />

 </p>

 <p>

 <label cclass = "textbox" for = "number">Jersey number: (2

 character max.)</label>

 <input type = "text" id = "number" name = "number" size = "2"

 maxlength = "2" />

 </p>

 <fieldset>

 <legend>Pick your size:</legend>

 <input type = "checkbox" id = "checkbox1" name = "checkbox1"

 value = "Small" checked = "checked" />

 <label for = "checkbox1">Small</label>

 <input type = "checkbox" id = "checkbox2" name = "checkbox2"

 value = "Medium" />

 <label for = "checkbox2">Medium</label>

 <input type = "checkbox" id = "checkbox3" name = "checkbox3"

 value = "Large"/>

 <label for = "checkbox3">Large</label>

 <input type = "checkbox" id = "checkbox4" name = "checkbox4"

HTML, XHTML, and CSS for the Absolute Beginner268

 value = "Extra Large" />

 <label for = "checkbox4">Extra Large</label>

 </fieldset>

 <fieldset>

 <legend>Choose a color:</legend>

 <input type = "radio" id = "radio1" name = "radio"

 value = "Red" />

 <label for = "radio1">Red</label>

 <input type = "radio" id = "radio2" name = "radio"

 value = "Blue" checked = "checked" />

 <label for = "radio2">Blue</label>

 <input type = "radio" id = "radio3" name = "radio"

 value = "Green" />

 <label for = "radio3">Green</label>

 </fieldset>

 <p>

 <input type = "submit" id = "submit_button" name = "submit_button"

 value = "Submit Order Information" />

 <input type = "reset" id = "reset_button" name = "reset_button"

 value = "Reset Form" />

 </p>

 </form>

 </body>

</html>

Chapter 8 • Digging Deeper into CSS 269

If you look at this example’s style rules, you will see that the first rule configures the display

of the form’s text in blue. In addition, a rule has been set up that modifies the appearance of

the form’s fieldset element in several ways. For starters, a little extra padding has been added

to keep things from being too bunched up. Second, the width of the fieldset element is set

to 300 pixels, overriding the default behavior of making the fieldset span the width of the

entire browser window. Last, the fieldset element’s border has been set to double just to

spice things up a bit. The final style rule affects the presentation of the two labels assigned to

the textbox class. The rule makes the labels float to the left and sets their width to 220 pixels.

As a result, the text control associated with the label becomes vertically aligned, as shown in

Figure 8.28.

FIGURE 8.28

Using CSS to
customize form

presentation.

Styling Based on Output Device
Depending on your target audience, you may find that you need to configure CSS to present

your content differently. For example, if your web content is targeted at an audience that is

visually disabled, you might want to make sure your style is directed towards braille output

devices. To define the type of media you want to target, you need to include the style element’s

optional media attribute. This attribute specifies the type of media your content should be

styled for. The following list of values can be assigned to the media attribute.

• all

• aural

• braille

• handheld

• print

• projection

• screen

HTML, XHTML, and CSS for the Absolute Beginner270

• tty

• tv

If you want, you can use the @media rule, which will allow you to specify more than one media

type, as demonstrated in the following example.

<style type = "text/css">

 @media print {

 body { font-size: 12pt; }

 }

 @media screen {

 body { font-size: 14px; }

 }

 @media screen, print {

 body { color: blue; }

 }

</style>

Here, a font size of 12 points was specified for the text when printed. However, a font size of

14 points was specified for text when displayed in the browser window. In addition, the third

rule has configured the use of blue when printing and displaying text.

BACK TO THE FORTUNE TELLER GAME

All right, now it is time to return your attention to this chapter’s project, the Fortune Teller

game. This game simulates a session with a Fortune Teller, allowing the player to enter any

number of questions. Answers to the player’s questions are randomly generated and dynam-

ically displayed in the browser window. To make the applications more appealing, an external

style sheet will be used to improve various aspects of its presentation.

Designing the Application
To help make things easier to digest, this web project will be completed in a series of steps,

as outlined here:

1. Create a new XHTML document.

2. Develop the document’s markup.

3. Add meta and title elements.

4. Specify document content.

5. Create the document’s script.

6. Create an external style sheet.

7. Load and test the Fortune Teller game.

Chapter 8 • Digging Deeper into CSS 271

Step 1: Creating a New XHTML Document
The first step in the development of the Fortune Teller game is to create a new web document.

Do so using your preferred code or text editor. Save the document as a plain text file named

FortuneTeller.html. This web document will make use of CSS style rules. Therefore, you will

need to create a second file named ft.css.

Step 2: Developing the Document’s Markup
The next step in the development of this project is to assemble the document’s markup. To

do so, add the following elements to the FortuneTeller.html file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 </head>

 <body>

 </body>

</html>

Step 3: Adding meta and title Elements
Next, add the following elements to the document’s head section.

<meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

<title>The Fortune Teller Game</title>

As previously stated, this web application will make use of an external style sheet named

ft.css. To set this up, add the following link to the external style sheet to the end of the head

section.

<link href = "ft.css" type = "text/css" rel = "stylesheet" />

Step 4: Specifying Document Content
Now it is time to work on laying out this document’s markup. Begin by adding the following

elements to the document’s body section.

HTML, XHTML, and CSS for the Absolute Beginner272

<div>

</div>

As you can see, these elements place an image inside a div element. The img element is used

to display a graphic showing the game’s logo, which is displayed at the top of the browser

window. The rest of the document’s markup is made up of a form and its elements.

Note that the form element’s action attribute has been set to the web page itself and not to a

server-side form handler. Also, note that the form has no Submit button (and thus no need

for a form handler). The form has two input elements, one with a text control and one for a

button control. Both elements are assigned a unique ID. In addition, the button element ends

with a JavaScript statement that uses the onClick() event handler to execute a JavaScript

function named AnswerQuestion().

The game will dynamically display text that shows the Fortune Teller answers each time a

new question is asked. To facilitate the display of this information a span element has been

added to the end of the form and assigned an ID of answer.

<form action = "FortuneTeller.html">

 <p>

 Instructions:

 </p>

 <p>

 To play this game all you have to do is type in a question that

 you would like the Fortune Teller to answer. Make sure that you

 phrase your question so that it can be answered with Yes/No styled

 responses. Once you have finished entering your question, click on

 the Get Answer button to see what the Fortune Teller has

 to say.

 </p>

 <p>

 <input type = "text" size = "68px" id = "inputField" />

 <input type = "button" value = "Get Answer" id = "checkBtn"

 Onclick = "AnswerQuestion()" />

 </p>

Chapter 8 • Digging Deeper into CSS 273

 <p> </p>

</form>

By assigning the span element a unique ID, you enable the application’s JavaScript statements

to dynamically update its content using the DOM.

Step 5: Creating the Document’s Script
Now that the document’s markup is complete, it is time to lay out its JavaScript code. Begin

by adding the following statements to the document’s head section.

<script type = "text/javascript">

<!-- Start hiding JavaScript statements

// End hiding JavaScript statements -->

</script>

These statements provide the markup needed to support the definition of the script. The

JavaScript itself consists of two functions named AnswerQuestion() and ResetScreen(). The

AnswerQuestion() function is executed whenever the player clicks on the game’s button con-

trol. To create this function, embed the following statements inside the script element’s

opening <script> and closing </script> tags:

function AnswerQuestion() {

 var checkButton = document.getElementById("checkBtn");

 if (document.getElementById('inputField').value == "") {

 window.alert("You did not submit a question. Try again.");

 } else {

 randomNo = 1 + Math.random() * 9;

 randomNo = Math.round(randomNo);

 switch (randomNo) {

 case 1:

 document.getElementById('answer').innerHTML = "Yes!";

 break;

 case 2:

 document.getElementById('answer').innerHTML = "No.";

 break;

HTML, XHTML, and CSS for the Absolute Beginner274

 case 3:

 document.getElementById('answer').innerHTML = "Maybe.";

 break;

 case 4:

 document.getElementById('answer').innerHTML = "Doubtful.";

 break;

 case 5:

 document.getElementById('answer').innerHTML =

 "Not in this lifetime.";

 break;

 case 6:

 document.getElementById('answer').innerHTML =

 "The answer is unclear.";

 break;

 case 7:

 document.getElementById('answer').innerHTML =

 "Ask this question again later.";

 break;

 case 8:

 document.getElementById('answer').innerHTML =

 "Today is your lucky day... Yes!";

 break;

 case 9:

 document.getElementById('answer').innerHTML =

 "Sorry but the answer is no.";

 break;

 case 10:

 document.getElementById('answer').innerHTML = "No way!";

 break;

 }

 setTimeout("ResetScreen()", 3000)

 }

}

The AnswerQuestion() function begins by declaring a variable named checkButton, which is

used to set up a reference to the document’s button control. Next, a check is made to ensure

that the user actually typed a question before clicking on the button control. If not, an error

Chapter 8 • Digging Deeper into CSS 275

message is displayed in a popup dialog window. If a question was submitted, a random

number from 1 to 10 is generated and stored in a variable named randomNo. A switch statement

code block is then used to compare the value stored in randomNo against ten case statements,

each of which is assigned a value from 1 to 10. When a match is found, that case statement

is executed. The first of these statements used dot notation and the DOM to assign (display)

a text string inside the document’s span element. This element assigned an ID of answer. The

assignment is made using the document object’s getElementById() method along with the

innerHTML property. As soon as the assignment is made, a break statement is executed, termi-

nating the execution of the rest of the switch statement code block.

The JavaScript SetTimeout() function is then executed. This function accepts two arguments,

the name of a JavaScript to execute and a numeric value specifying how many milliseconds

to pause before the specified function is executed (300 milliseconds equals 3 seconds).

So, after a three-second pause, the ResetScreen() function, shown below, is executed. This

function uses dot notation and the DOM to clear out the player’s questions and the game’s

answer in order to ready the game for a another question.

function ResetScreen() {

 document.getElementById('inputField').value = "";

 document.getElementById('answer').innerHTML = "";

}

Step 6: Creating an External Style Sheet
The FortuneTeller.html document is styled using an external style sheet named ft.css. The

rules stored in this style sheet are shown here:

body {

 background-color: white;

 }

div {

 border-width: thin;

 border-style: solid;

 width: 550px;

 height: 104px;

 }

p {font-family: Arial;

 color: green;

HTML, XHTML, and CSS for the Absolute Beginner276

 font-size: 1pc; }

span {

 font-size: 1.5pc }

 font-weight: bold;

 color: green;

 }

The first rule explicitly assigns white as the web page’s background color. The second rule

formats the document’s div element, assigning it a thin, solid border that is 550 pixels wide

and 104 pixels high (e.g., the exact dimension of the img element embedded inside the div

element). The third rule assigns the font type, color, and size for all text stored in the docu-

ment’s paragraph elements. The last rule assigns the font size, height, and color of the text

displayed inside the document’s span element, making it a little larger than that of its para-

graph text.

Step 7: Loading and Testing the Fortune Teller Game
Assuming you have followed along carefully, your copy of the FortuneTeller.html document

should be complete. To make sure you have assembled it correctly, look at the following

example, which shows a complete copy of the finished document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>The Fortune Teller Game</title>

 <link href = "ft.css" type = "text/css" rel = "stylesheet" />

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function AnswerQuestion() {

 var checkButton = document.getElementById("checkBtn");

 if (document.getElementById('inputField').value == "") {

 window.alert("You did not submit a question. Try again.");

Chapter 8 • Digging Deeper into CSS 277

 } else {

 randomNo = 1 + Math.random() * 9;

 randomNo = Math.round(randomNo);

 switch (randomNo) {

 case 1:

 document.getElementById('answer').innerHTML = "Yes!";

 break;

 case 2:

 document.getElementById('answer').innerHTML = "No.";

 break;

 case 3:

 document.getElementById('answer').innerHTML = "Maybe.";

 break;

 case 4:

 document.getElementById('answer').innerHTML = "Doubtful.";

 break;

 case 5:

 document.getElementById('answer').innerHTML =

 "Not in this lifetime.";

 break;

 case 6:

 document.getElementById('answer').innerHTML =

 "The answer is unclear.";

 break;

 case 7:

 document.getElementById('answer').innerHTML =

 "Ask this question again later.";

 break;

 case 8:

 document.getElementById('answer').innerHTML =

 "Today is your lucky day... Yes!";

 break;

 case 9:

 document.getElementById('answer').innerHTML =

 "Sorry but the answer is no.";

 break;

HTML, XHTML, and CSS for the Absolute Beginner278

 case 10:

 document.getElementById('answer').innerHTML = "No way!";

 break;

 }

 setTimeout("ResetScreen()", 3000)

 }

 }

 function ResetScreen() {

 document.getElementById('inputField').value = "";

 document.getElementById('answer').innerHTML = "";

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 <div>

 <img src = "title.png" width = "550 height = "104"

 alt = "Game Logo" />

 </div>

 <form action = "FortuneTeller.html">

 <p>

 Instructions:

 </p>

 <p>

 To play this game all you have to do is type in a question that

 you would like the Fortune Teller to answer. Make sure that you

 phrase your question so that it can be answered with Yes/No styled

 responses. Once you have finished entering your question, click on

 the Get Answer button to see what the Fortune Teller has

 to say.

Chapter 8 • Digging Deeper into CSS 279

 </p>

 <p>

 <input type = "textfield" size = "68" id = "inputField">

 <INPUT type = "button" value = "Get Answer" id = "checkBtn"

 onclick= AnswerQuestion()>

 </p>

 <p> </p>

 </form>

 </body>

</html>

If you have not already done so, save your document and load it into your web browser to see

how things have turned out.

A complete copy of the source code for this project, including its style sheet and
the graphics needed to create its graphic controls is available on the book’s com-
panion web page, located at www.courseptr.com/downloads.

SUMMARY

This chapter rounded out your understanding of cascading style sheets by demonstrating its

use in a variety of circumstances. This included learning how to use CSS to control the con-

figuration of containers and including their placement, border, margins, and padding. You

learned how to create CSS rules that modify the display of list markers and to create rollover

links, controls, and buttons. This chapter also showed you how to use CSS to better integrate

the presentation of text and images. On top of all this, you learned how to influence the

presentation of forms and tables. This chapter wrapped things up by walking you through

the creation of the Fortune Teller game.

Now, before you move on to Chapter 10, take a few minutes and enhance the Fortune Teller

game by implementing the following challenges.

HINT

HTML, XHTML, and CSS for the Absolute Beginner280

www.courseptr.com/downloads

Challenges

1. As currently designed, the Fortune Teller Game displays one

of ten randomly selected answers to player questions.

However, it does not take long for the player to realize the

limited range of answers. Make things more interesting by

increasing the number of available answers.

2. As written, the Fortune Teller Game left justifies its graphic,

text, and form. As a result, things look a little out of place if a

user fully expands the browser window. To fix this, use CSS to

center the display of all content.

Chapter 8 • Digging Deeper into CSS 281

